Syllabus

ACF-0902 CALCULO INTEGRAL

DRA. CLAUDIA LETICIA CEN CHE

ccenche@itescam.edu.mx

Semestre Horas Teoría Horas Práctica Créditos Clasificación
2 3 2 5 Ciencias Básicas

Prerrequisitos
Plantea y resuelve problemas utilizando las definiciones de límite y derivada de funciones de una variable para la elaboración de modelos matemáticos aplicados.

Competencias Atributos de Ingeniería
Comprende los dos teoremas fundamentales del cálculo para establecer la relación entre Cálculo Diferencial e Integral   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería
Aplica los teoremas y las propiedades de la integral para evaluar integrales definidas   Aplicar, analizar y sintetizar procesos de diseño de ingeniería que resulten en proyectos que cumplen las necesidades específicas
MANUAL DE PRACTICA 2020-2021P   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería
Identifica el método de integración más adecuado para resolver una integral indefinida   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería
Utiliza las definiciones de integral y las técnicas de integración para la solución de problemas geométricos y aplicados en la ingeniería   Aplicar, analizar y sintetizar procesos de diseño de ingeniería que resulten en proyectos que cumplen las necesidades específicas
Aplica series para aproximar la solución de integrales especiales   Aplicar, analizar y sintetizar procesos de diseño de ingeniería que resulten en proyectos que cumplen las necesidades específicas

Normatividad
ASISTENCIA. 1. La asistencia será tomada en la plataforma TEAMS en donde se llevarán a cabo las sesiones de clases. ACTIVIDADES. 1. Las actividades programadas se subirán en la plataforma MODDLE en la fecha establecida. 2. No se aceptarán actividades fuera de las fechas límites estipuladas en el MODDLE. ACTITUDES. 1. Durante la clase por el TEAMS está prohibido el uso del chat, a menos que sea para hacer una pregunta a la profesora. 2.Para participar en la clase, se debe solicitar para activar el micrófono. 3. Los micrófonos deberán estar en silencio durante la clase. 4.Poner una selfie en su perfil con el rostro descubierto. 5.Siempre debe dirigirse a la profesora y compañeros con cortesía. SEGUNDA REEVALUACIÓN La calificación máxima es de 9

Materiales
1. Calculadora científica. 2. Software graficador. 3. Texto: El Cálculo (7a edición) https://luiscastellanos.files.wordpress.com/2007/02/calculo-louis-leithold.pdf 6.Texto: El Cálculo con geometría analítica http://www.cobaehtolcayuca.com/LECTURAS/Calculo%20Larsson%208%20edicion.pdf

Bibliografía disponible en el Itescam
Título
Autor
Editorial
Edición/Año
Ejemplares
El Cálculo /
Leithold, Louis
Oxford,
7a. / 2005.
25
-
Cálculo /
Ayres, Jr. Fank
McGraw-Hill,
5a. / 2010.
4
-

Parámetros de Examen
PARCIAL 1 De la actividad 1.1.1 a la actividad 2.1.3
PARCIAL 2 De la actividad 3.1.1 a la actividad 4.1.1

Contenido (Unidad / Competencia / Actividad / Material de Aprendizaje)
1. TEOREMA FUNDAMENTAL DEL CÁLCULO
          1.. MANUAL DE PRACTICA 2020-2021P
                   1... Manual de prácticas
                          
          1.1. Comprende los dos teoremas fundamentales del cálculo para establecer la relación entre Cálculo Diferencial e Integral
                   1.1.1. Actividad 1: Calcular áreas aproximadas de funciones simples y calcular sumas de Riemann
                           Medición aproximada de figuras (612145 bytes)
                           1.3 Sumas de Riemann (859157 bytes)
                           1.2 Notación de sumatoria (1757578 bytes)
                           1.4- Definición de integral definida (956629 bytes)
                          
                   1.1.2. Actividad 2: Aplicar el teorema del valor intermedio y el TFC para evaluar integrales definidas.
                           Teorema de existencia (581296 bytes)
                          
          1.2. Aplica los teoremas y las propiedades de la integral para evaluar integrales definidas
                   1.2.1. Actividad 3: Calcular integrales definidas diversas y asociar cada integral con su interpretación geométrica
                           1.8 Teorema fundamental del Cálculo (773067 bytes)
                           1.9 Cálculo de integrales definidas (1018915 bytes)
                           1.10 Integrales impropias (660360 bytes)
                          
2. INTEGRAL DEFINIDA Y MÉTODOS DE INTEGRACIÓN
          2.1. Identifica el método de integración más adecuado para resolver una integral indefinida
                   2.1.1. Actividad 1: Encontrar la función primitiva de una función dada y graficar una familia de funciones considerando distintos valores de la constante de integración
                           2.3.1-Cálculo de integrales directas (748881 bytes)
                           2.3.2- Cálculo de integrales con cambio de variable (1173098 bytes)
                           2.3.3- Cálculo de integrales trigonométricas (1695471 bytes)
                           2.3.4- Cálculo de integrales por partes (1036185 bytes)
                           2.3.5-Cálculo de integrales por sustitución trigonométrica (1149596 bytes)
                           2.3.6- Cálculo de integrales por fracciones parciales (1128777 bytes)
                          
                   2.1.2. Actividad 2: Resolver integrales que no pueden resolverse de forma directa y seleccionar el método de solución más adecuado
                          
                   2.1.3. Actividad 3: Resolver integrales indefinidas
                          
3. APLICACIONES DE LA INTEGRAL
          3.1. Utiliza las definiciones de integral y las técnicas de integración para la solución de problemas geométricos y aplicados en la ingeniería
                   3.1.1. Actividad 1: Plantear la integral que resuelva el cálculo del área delimitada por más de dos funciones
                           Área bajo la gráfica de una función (Cen) (760499 bytes)
                          
                   3.1.2. Actividad 2: Calcular la longitud de arco de una curva
                           Apuntes longitud de curva (1393000 bytes)
                           Ejercicios resueltos longitud de arco (Cen) (2279042 bytes)
                          
                   3.1.3. Actividad 3: Calcular el volumen de un solido de revoluación
                           Apuntes sólidos de revolución y ejemplos (Cen) (2105760 bytes)
                           Sólidos de revolución. Parte 1 (Cen) (1245302 bytes)
                           Sólidos de revolución. Parte 2. (Cen) (1108914 bytes)
                           Sólidos de revolución. Parte 3. (Cen) (1232811 bytes)
                           Sólidos de revolución. Parte 4. (Cen) (707974 bytes)
                          
4. SERIES
          4.1. Aplica series para aproximar la solución de integrales especiales
                   4.1.1. Actividad: Analizar por equipos los conceptos de serie finita e infinita, convergencia y divergencia
                           Serie finita (824404 bytes)
                           Serie finita (Cen) (824404 bytes)
                           Serie infinita (Cen) (1136642 bytes)
                           Serie de Taylor (Cen) (1201327 bytes)
                           Representación en serie de Taylor (Cen) (937501 bytes)
                          

Prácticas de Laboratorio (20212022N)
Fecha
Hora
Grupo
Aula
Práctica
Descripción

Cronogramas (20212022N)
Grupo Actividad Fecha Carrera

Temas para Segunda Reevaluación