Syllabus

BQF-1020 PROGRAMACIÓN Y MÉTODOS NUMÉRICOS

DR MARIO ADRIAN DE ATOCHA DZUL CERVANTES

maadzul@itescam.edu.mx

Semestre Horas Teoría Horas Práctica Créditos Clasificación
4 3 2 5 Ciencias Básicas

Prerrequisitos
Maneja software para elaboración de gráficas
Aplica los métodos del cálculo diferencial e integral, el álgebra vectorial y matricial para la solución de problemas.
Aplica los métodos para la solución de ecuaciones diferenciales y sistemas de ecuaciones diferenciales.

Competencias Atributos de Ingeniería
Traduce métodos de solución numérica de problemas matemáticos en algoritmos computacionales, de modo que pueda sistematizar el proceso de solución.   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería
Diseña soluciones a problemas matriciales por métodos numéricos, utilizando técnicas de estructuras de control.   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería
Resuelve numéricamente sistemas de ecuaciones lineales, mediante la utilización de funciones.   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería
Resuelve numéricamente ecuaciones no lineales de una variable y sistemas de ecuaciones no lineales.   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería
Resuelve numéricamente ecuaciones no lineales de una variable y sistemas de ecuaciones no lineales.   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería
Aproxima funciones por regresión lineal o no lineal para disponer de un modelo adecuado para los datos.   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería
Interpola numéricamente datos a partir de datos lineales o de cualquier superior.   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería
Deriva e integra numéricamente funciones que le permitan resolver problemas matemáticos o de ingeniería.   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería
Deriva e integrar numéricamente funciones matemáticas para la solución de problemas.   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería
Resuelve una o varias ecuaciones diferenciales ordinarias por métodos numéricos.   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería
Programa los métodos numéricos en un lenguaje de alto nivel para facilitar la solución numérica.   Identificar, formular y resolver problemas de ingeniería aplicando los principios de las ciencias básicas e ingeniería

Normatividad
1. El alumno tendrá máximo 10 minutos de retardo, después de ese tiempo se considera falta. 2. El alumno debe tener una libreta exclusiva de la materia, así como calculadora científica, bolígrafo, portaminas y borrador. 3. El alumno deberá prestar atención durante la clase, en caso contrario, no tendrá derecho de aclarar dudas. 4. El alumno debe mostrar respeto al profesor y a sus compañeros. 5. No está permitido comer en el aula. 6. No se permite el uso de dispositivos electrónicos (laptops, celulares, tablets, etc.) en el aula, a menos que la clase lo requiera. 7. Las tareas serán aceptadas siempre que se entreguen en tiempo y forma, después NO se aceptarán. 8. Para tener derecho a entregar tareas, el alumno deberá cubrir al menos el 80% de asistencias. 9. Para tener derecho a reevaluación, el alumno debe entregar las tareas, en caso de NO entregarla, NO tendrá derecho a reevaluación. De igual modo, en caso de que se detecte plagio y/o duplicidad de tareas, ambos autores tendrán que recursar la asignatura. 10. Las prácticas NO son reprogramables. 11. Debido a la CONTINGENCIA COVID-19, en caso de tener algún síntoma o bien, estar en contacto con alguna persona con síntomas, NO asistir de manera presencial, realizar su proceso de justificación de acuerdo al reglamento. Es responsabilidad del (la) estudiante, estar pendiente de las actividades realizadas y por entregar

Materiales
El alumno debe tener una libreta exclusiva de la materia, así como calculadora científica, bolígrafo, portaminas y borrador. Cuando se requiera deberá traer laptop para el desarrollo y complemento de la clase.

Bibliografía disponible en el Itescam
Título
Autor
Editorial
Edición/Año
Ejemplares
Métodos numéricos para ingenieros /
Chapra Steven C.
McGraw-Hill,
6a. / 2011.
10
-

Parámetros de Examen
PARCIAL 1 De la actividad 1.1.1 a la actividad 2.2.2
PARCIAL 2 De la actividad 3.1.1 a la actividad 5.3.2

Contenido (Unidad / Competencia / Actividad / Material de Aprendizaje)
1. Introducción a la programación
          1.1. Traduce métodos de solución numérica de problemas matemáticos en algoritmos computacionales, de modo que pueda sistematizar el proceso de solución.
                   1.1.1. El alumno diseña un mapa mental sobre las etapas básicas para la realización de diferentes actividades para comprender el concepto de algoritmo. Expone ante la clase en una presentación de ppt su trabajo.
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill. Cap. 2
                          
                   1.1.2. Mediante un documento escrito, el alumno elaborar un resumen de las características del lenguaje de programación que se empleará en el curso. Incluye una síntesis de palabras comandos de entrada y salida de un lenguaje de programación elegido
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill.
                           http://algoritmosylenguajes.blogspot.mx/2008/05/unidad-iii_31.html
                          
                   1.1.3. En una hoja de cálculo de excel, el alumno elaborar algoritmos secuenciales, sencillos, para el cálculo de áreas, volúmenes, etc.
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill.
                          
                   1.1.4. PRÁCTICA: Elaborar un programa en el lenguaje elegido que permita resolver problemas de ecuaciones no lineales con una sola incógnita, y que permita al usuario elegir porque método se resolverá.
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill. Cap. 2
                           ( bytes)
                           ( bytes)
                          
2. Estructuras de control, funciones y arreglos.
          2.1. Diseña soluciones a problemas matriciales por métodos numéricos, utilizando técnicas de estructuras de control.
                   2.1.1. El alumno diseña un algoritmo y su codificación para realizar la suma de dos vectores de la misma dimensión.
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill.
                           ( bytes)
                          
                   2.1.2. El alumno diseña un algoritmo y su codificación para realizar la suma de dos matrices de la misma dimensión. También se puede realizar en el software la multiplicación de dos matrices.
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill.
                           ( bytes)
                          
          2.2. Resuelve numéricamente sistemas de ecuaciones lineales, mediante la utilización de funciones.
                   2.2.1. El alumno emplear software matemático para elaboración de gráfica de funciones y mediante ellas encontrar la solución de las ecuaciones.
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill.
                          
                   2.2.2. El alumno usa software matemático para la solución numérica sistemas de ecuaciones no lineales de una o más variables.
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill.
                          
                   2.2.3. Parcial 1
                          
3. Análisis del error y solución de ecuaciones
          3.1. Resuelve numéricamente ecuaciones no lineales de una variable y sistemas de ecuaciones no lineales.
                   3.1.1. El alumno elabora, a mano, gráficas de diferentes funciones para encontrar las raíces a través de la intersección con el eje X.
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill.
                          
                          
                   3.1.2. El alumno emplear software matemático para elaboración de gráfica de funciones y mediante ellas encontrar la solución de las ecuaciones.
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill.
                          
          3.2. Resuelve numéricamente ecuaciones no lineales de una variable y sistemas de ecuaciones no lineales.
                   3.2.1. El alumno investiga y documenta como elaborar programas para la resolución de ecuaciones no lineales de una incógnita, por diferentes métodos. También incluye el software realizado.
                          
4. Regresión, interpolación y derivación numéricas
          4.1. Aproxima funciones por regresión lineal o no lineal para disponer de un modelo adecuado para los datos.
                   4.1.1. El alumno elabora, a mano, gráficas de diferentes funciones para encontrar las raíces a través de la intersección con el eje X.
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill.
                          
          4.2. Interpola numéricamente datos a partir de datos lineales o de cualquier superior.
                   4.2.1. El alumno emplea una hoja de cálculo, para elaboración de gráficas de dispersión a partir de datos experimentales.
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill.
                          
          4.3. Deriva e integra numéricamente funciones que le permitan resolver problemas matemáticos o de ingeniería.
                   4.3.1. El alumno realiza el diagrama de flujo para elaborar un programa para la obtención de la recta de mínimos cuadrados que mejor ajuste a un conjunto de datos experimentales. Usa una hoja de cálculo, para obtener el modelo matemático que mejor se aju
                           El alumno realiza el diagrama de flujo para elaborar un programa para la obtención de la recta de mínimos cuadrados que mejor ajuste a un conjunto de datos experimentales. Usa una hoja de cálculo, para obtener el modelo matemático que mejor se ajuste a un conjunto de datos experimentales.
                          
5. Integración y resolución de ecuaciones diferenciales ordinarias
          5.1. Deriva e integrar numéricamente funciones matemáticas para la solución de problemas.
                   5.1.1. El alumno realiza el diagrama de flujo y elabora un programa para integración numérica de funciones analíticas y a partir de una tabla de datos experimentales, empleando diferentes métodos de integración.
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill.
                          
          5.2. Resuelve una o varias ecuaciones diferenciales ordinarias por métodos numéricos.
                   5.2.1. El alumno elabora una tabla comparativa con las características de los diferentes métodos para resolver numéricamente ecuaciones diferenciales ordinarias. La discusión de la tabla la realiza en una presentación de ppt.
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill.
                          
          5.3. Programa los métodos numéricos en un lenguaje de alto nivel para facilitar la solución numérica.
                   5.3.1. El alumno emplea un software matemático (Matlab), para la solución numérica de ecuaciones diferenciales ordinarias. También realiza la simulación del funcionamiento de un fermentador o algún otro biorreactor en estado dinámico, resolviend
                           Chapra C.(2007). Métodos Numéricos Para Ingenieros. México: Mc Graw-hill.
                          
                   5.3.2. PARCIAL 2
                          

Prácticas de Laboratorio (20222023P)
Fecha
Hora
Grupo
Aula
Práctica
Descripción

Cronogramas (20222023P)
Grupo Actividad Fecha Carrera

Temas para Segunda Reevaluación